

Kipoi: accelerating the community exchange and

reuse of predictive models for genomics

Žiga Avsec*1,2,7, Roman Kreuzhuber3,4,7, Johnny Israeli5, Nancy Xu5, Jun Cheng1,2, Avanti
Shrikumar5, Abhimanyu Banerjee5, Daniel S. Kim5, Lara Urban4,6, Anshul Kundaje*5, Oliver
Stegle*4,6, Julien Gagneur*1

1Technical University Munich
2QBM Graduate School, Ludwig-Maximilians Universität, Munich
3Department of Haematology, University of Cambridge
4European Molecular Biology Laboratory, European Bioinformatics Institute
5Stanford University
6European Molecular Biology Laboratory, Genome Biology Unit

7These authors contributed equally to this work.
*Correspondence should be addressed to Z.A. (avsec@in.tum.de), A.K. (akundaje@stanford.edu), O.S.
(oliver.stegle@embl.de), J.G. (gagneur@in.tum.de).

Abstract

Advanced machine learning models applied to large-scale genomics datasets hold the
promise to be major drivers for genome science. Once trained, such models can serve
as a tool to probe the relationships between data modalities, including the effect of
genetic variants on phenotype. However, lack of standardization and limited
accessibility of trained models have hampered their impact in practice. To address
this, we present Kipoi, a collaborative initiative to define standards and to foster reuse
of trained models in genomics. Already, the Kipoi repository contains over 2,000
trained models that cover canonical prediction tasks in transcriptional and
post-transcriptional gene regulation. The Kipoi model standard grants automated
software installation and provides unified interfaces to apply and interpret models. We
illustrate Kipoi through canonical use cases, including model benchmarking, transfer
learning, variant effect prediction, and building new models from existing ones. By
providing a unified framework to archive, share, access, use, and build on models
developed by the community, Kipoi will foster the dissemination and use of machine
learning models in genomics.

Introduction

Advances in machine learning, coupled with rapidly growing volumes of molecular data, are

catalyzing progresses in genomics. In particular, predictive machine learning models, which

are mathematical functions trained to map input data to output values, find widespread

usage including variant calling from whole genome sequencing data1,2, predicting CRISPR

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

guide activity3,4, and predicting molecular phenotypes from the DNA sequence, including

transcription factor binding, chromatin accessibility and splicing efficiency5,6,7,8,9,10. Once

trained, such models hold the promise to allow for probing regulatory dependencies in silico,

which, besides other applications, enables interpreting functional variation in personal

genomes and rationalizes the design of synthetic genes.

However, despite the pivotal importance of predictive models in genomics, it is surprisingly

difficult to share and exchange models effectively. In particular, there is no established

standard for sharing trained models, in contrast to bioinformatics software and workflows,

which are commonly shared through general-purpose community software platforms such as

the highly successful Bioconductor project11, or to genomic raw data, which can be shared

via data repositories such as GEO12, ArrayExpress13 and the European Nucleotide Archive14.

Instead, trained genomics models are made available through scattered channels, including

code repositories, supplementary material of articles and author-maintained web pages. The

lack of a standardized framework for sharing trained models in genomics hampers their

effective use, including their application to new data, and their use as building blocks to

solve more complex tasks.

Repositories of trained models have helped to overcome these challenges in other fields.

For example, model repositories in computer vision and natural language processing15–17 are

routinely used for benchmarking and as a starting point to rapidly develop new models. A

model repository for genomics requires additional developments in order to cover a wide

range of data types of diverse genomics technologies, each of which requires specific data

pre-processing strategies. A second challenge is the heterogeneity of machine learning

frameworks that are currently used in the field, including Keras18, Tensorflow19, PyTorch20,

and custom model code. Additionally, applications in genomics pose requirements on the

interpretability of models, for example to understand changes in phenotype for different DNA

sequence inputs. Finally, a repository of trained models for genomics needs to be easy to

use and deliver robust and well-documented software to enable application by the many

practitioners not expert in machine learning.

2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

Results

Figure 1 | Overview of Kipoi. From left to right: At its core, Kipoi defines a programmatic standard for
data-loaders and predictive models. Data-loaders translate genomics data types into numeric
representation that can be used by machine learning models. Kipoi models can be implemented using
a broad range of machine learning frameworks. The Kipoi repository allows community users to store
and retrieve trained models together with associated data-loaders. Kipoi models are automatically
versioned, nightly tested and systematically documented with examples for their use. Kipoi models
can be accessed through unified interfaces using python, R, and command line to install models and
all required software dependencies. Kipoi streamlines the usage of trained models to make
predictions on new data, to score variants stored in standard personal genome file format, and to
assess the effect of variation in the input to model predictions (feature importance score). Moreover,
Kipoi models can be adapted to new tasks by retraining or by building new composite models that
combine existing ones. Newly defined models can be deposited in the repository.

Here we present Kipoi (Greek for gardens, pronounced “Kípi”), a collaborative initiative to

foster sharing and re-use of trained models. Already, the Kipoi repository (Fig. 1, middle)

contains over 2,000 trained models that cover key predictive tasks in genomics, including the

prediction of chromatin accessibility, transcription factor binding, and alternative splicing from

DNA sequence. It is accessible via GitHub and the Kipoi website (https://www.kipoi.org),

which provides model overviews and convenient model search functionalities. One of the

core innovations of Kipoi include standardized data handling (“data-loaders”) (Fig. 1, left),

which facilitates standardized data input of genomic data types across a wide range of

models. Kipoi defines an application programming interface (API) (Fig. 1 right), i.e. a

standard way for software components to communicate with Kipoi models that allows

programmers to interchangeably use Kipoi models in their software with minimal coding

effort. The Kipoi API is available in two of the most popular programing languages in

bioinformatics, python and R, and from the command line, allowing any bioinformatics

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

pipeline to integrate Kipoi models. In addition to making model predictions using established

bioinformatics formats, most of the current Kipoi models (78%) can score the impact of

genetic variants, and thus facilitate their functional interpretation.

To support sustainability of the trained models and facilitate their dissemination, Kipoi builds

on and interoperates a range of software development technologies and standards. Kipoi’s

infrastructure is fully open-source: The models and the code of Kipoi itself are stored on

GitHub, a code repository with issue tracking that facilitates transparent and rapid

user-developer iterations. Moreover, GitHub tracks and indexes all versions of the code and

models, hence facilitating the reproduction of a given analysis at any time point in the future

as required for reproducible science21. Kipoi offers seamless installation of the models and

their software dependencies independently of the programming language of the model

(using Conda and pip package managers hence leveraging the Bioconda distribution22),

addressing a major hurdle preventing the widespread sharing of trained machine learning

models across the bioinformatics community. Moreover, nightly tests on all models are

performed using a continuous integration service (CircleCi) to ensure model executability on

test data at all times. Here, we illustrate usage of Kipoi through realistic use cases and make

the code available for each of them.

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

Benchmarking of alternative models predicting transcription factor

binding

Figure 2 | Applying and benchmarking alternative Kipoi models for transcription factor binding
prediction. (a) Five models for predicting transcription factor binding that are based on alternative
modeling paradigms: i) predefined position weight matrices contained in the HOCOMOCO database23;
ii) lsgkm-SVM24, a support vector machine classifier; iii) the convolutional neural network DeepBind5;
iv) the multi-task convolutional neural network DeepSEA; v) FactorNet, a multimodal deep neural
network with convolutional and recurrent layers that further integrates chromatin accessibility profile
and genomic annotation features. Models differ by i) the size of genomic input sequence, where
DeepSEA6 and FactorNET7 consider ~1 kb sequence inputs, whereas other models are based on
~100 bp, and ii) parametrization complexity with the total size of model parameters ranging from 16kB
(pwm_HOCOMOCO) to 200 Mb (DeepSEA). (b) Performance of the models in a for predicting
ChIP-seq peaks of four transcription factors on held-out data (chromosome 8), quantified using the
area under the precision-recall curve. More complex models yield more accurate predictions than
basic models which are commonly used. (c) Example access to Kipoi models via the command line
interface to install required software dependencies, download the model, extract and pre-process the
data, and write predictions to a new file. Results as shown in b can be obtained for all Kipoi models
using this generic command. Placeholder <Model> can be any of the models listed in a.

Practitioners are often faced with multiple predictive models for a particular task. Choosing

the most appropriate model often requires a customized benchmark as the original

publications describing these models typically use different datasets and provide setups

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

favoring the published model. Access to a wide range of models through a common API

facilitates such systematic comparisons. To illustrate this use case, we benchmarked five

commonly used models for predicting genomic binding sites of transcription factors (Fig. 2a).

These models span different modeling paradigms, including methods based on classical

position weight matrices (PWM), gapped k-mer support vector machines (lsgkm-SVM24) and

deep learning (DeepBind5, DeepSEA6 and FactorNet7). The models were assessed for

distinguishing bound from unbound regions, where bound regions were defined as

high-confidence binding events in chromatin immunoprecipitation sequencing (ChIP-seq)

experiments of four transcription factors in different cell lines: CEBPB in HeLa-S3, JUND in

HepG2, MAFK in K562, and NANOG in H1-hESC (Methods). The Kipoi implementations for

all models except lsgkm-SVM were derived from implementations provided by the respective

publications and were hence trained by the authors. The performance was assessed on

chromosome 8 which was not used to train any of the considered models.

Position weight matrices generally performed poorly across all transcription factors (Fig. 2b),

likely due to their inability to account for additional sequence features, such as motifs of

other cooperating and competing transcription factors. More complex models (e.g.

DeepSEA and FactorNet) consistently outperformed simpler ones (e.g. DeepBind and

lsgkm-SVM). FactorNet yielded the most accurate predictions across all transcription factors,

highlighting the importance of explicitly integrating target cell-type specific chromatin

accessibility profiles with DNA sequence for predicting in vivo transcription factor binding

(Fig. 2b). Consistent with this, we also observed that DeepSEA and FactorNet perform

similarly when model evaluation is restricted to bound and unbound regions that strictly

overlap accessible chromatin regions (Supp. Fig. 1, Methods).

In this example, Kipoi turned an otherwise cumbersome task into executing three simple

commands (Fig 2c). The considered models are implemented using different software

frameworks (Fig 2a), require different input file formats and return predictions in different

formats. Additionally, installing the appropriate software dependencies for each model is

difficult and time consuming without Kipoi.

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

Improving predictive models of chromatin accessibility using transfer

learning

Figure 3: Adapting existing models to new tasks (transfer learning). (a) Architecture of
alternative models for predicting chromatin accessibility from DNA sequence. Model parameters are
either randomly initialized (left) or transferred from an existing neural network pre-trained on 421 other
biosamples (cell lines or tissues, right). (b) Prediction accuracy measured using the area under the
precision-recall curve, comparing randomly initialized (light blue) versus pre-trained (dark blue)
models. Shown is the performance on held-out test data (chromosomes 1, 8 and 21) for 10
biosamples that were not used during pre-training. (c) Training curves, showing the area under the
precision-recall curve on the validation data (chromosome 9) as a function of the training epoch. The
dashed vertical line denotes the training epoch at which the model training is completed. Pre-trained
models require fewer training epochs than randomly initialized models and they achieve more
accurate predictions.

Training new models can be time consuming and require large training datasets. It can be

facilitated by transfer learning, i.e. by reusing models trained on one prediction task to

initialize a new model for a different but related task25. Transfer learning typically enables

more rapid training, requires less data to train and improves the predictive performance

compared to models trained from scratch26. One class of predictive models well suited to

transfer learning are deep neural networks. Deep neural networks consist of successive

layers which transform input data into increasingly abstract representations. Most of the

low-level abstractions, for instance edge detection for images or transcription factor motifs in

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

genomics, turn out to be common to multiple prediction tasks. Hence, the training on a

different task can be focused on the most abstract layers. Transfer learning of deep neural

networks has been successfully used across multiple domains including biological

imaging27–30, natural language processing31, and genomics32.

Here, we revisited the transfer learning example in genomics32 on a larger dataset of

chromatin accessibility profiles for 431 biosamples (cell lines or tissues, Methods). We

trained a genome-wide model predicting chromatin accessibility for 421 biosamples (tasks)

while holding out 10 biosamples. For the 10 held-out biosamples, we transferred the model

parameters to a new model and replaced the final layer with a randomly initialized one (Fig.

3a). One transferred single-task model was trained for each of the 10 held-out biosamples,

keeping the model parameters of all layers except the last two layers fixed during re-training.

Models initialized with transferred model parameters yielded improved predictive accuracy

for all biosamples with 15.2% larger area under the precision-recall curve on average,

compared to the same model initialized entirely with random parameters (Fig. 3b). In

addition to improved performance, the training time for transferred models was substantially

lower. On average, training the randomly initialized model to optimal performance required

17.3 iterations over the whole training dataset (epochs) (>1 day training time), compared to

2.8 epochs (~4 hours training time) for transferred models (Fig. 3c).

Kipoi promotes transfer learning in three ways. First, it provides access to a comprehensive

collection of state-of-the-art models in genomics. Transfer learning works well if the tackled

task is similar to the original task of the pre-trained model25. Kipoi allows users to quickly

browse models by name, tag or framework and hence find the model candidate closest to

their task at hand. Second, each model is easily installable and comes packaged with a

tested data-loader. Most of the data-loaders can be directly used to re-train models. Third,

for neural network models, Kipoi offers a command to return and store the activation of a

desired intermediate layer rather than the final, prediction layer. The transferred model can

take those activations as input features instead of the original input. Since the intermediate

layer can serve as a good feature extractor, this procedure can speed up the training

process by multiple orders of magnitude without reducing performance. For the transfer

learning example in Fig. 3, model training took only 3 minutes with the pre-computed values

on a single graphical card (NVIDIA TITAN X). Altogether, leveraging pre-trained models, in

particular deep models that have been trained on large datasets with a substantial

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

investment in compute time, allow researchers to train more accurate models on smaller

datasets while saving time and compute costs.

Predicting the molecular effects of genetic variants using interpretation

plugins

Figure 4: Variant effect prediction and feature importance scores. (a) Schema of variant effect
prediction using in-silico mutagenesis. Model predictions calculated for the reference allele and the
alternative allele are contrasted and written into an annotated copy of the input variant call format file
(VCF). (b) Kipoi uniformly supports variant effect prediction for models that can make predictions
anywhere in the genome (top) and also for models that can make predictions only on predefined
regions such as exon boundaries (bottom). (c) Generic command for variant effect prediction. (d)
Generic command to compute the importance scores using in-silico mutagenesis (e) Feature
importance scores visualized as a mutation map (heatmap, blue negative effect, red positive effect)
for variant rs35703285 and the predicted GATA2 binding difference between alleles for 4 different
models. The black boxes in the mutation maps highlight the position and the alternative allele of the
respective variant. Additionally, stars highlight variants annotated in the human variant database
ClinVar with red: (likely) pathogenic, green: likely benign, grey: uncertain or conflicting significance,
other.

One important application of trained models in genomics, with translational relevance in

human genetics and cancer research, is to predict the effects of genetic variants on

molecular phenotypes,6,33. Individually, variant effect prediction has been implemented by a

subset of published sequence-based predictive models such as DeepBind5, DeepSEA6, and

CpGenie33. In Kipoi this is generalized and implemented as a plugin that allows annotating

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

variants obtained from the variant call format (VCF) files using any DNA sequence based

model. The variant effect prediction plugin performs in-silico mutagenesis by contrasting

model predictions for the reference allele and for the alternative allele (Fig. 4a). If the model

can be applied across the entire genome, such as chromatin accessibility models,

sequences centered on the queried variants are extracted (top row, Fig. 4b). If instead the

model can only be applied to regions anchored at specific genomic locations, such as

splicing models at intron-exons junctions, only sequences extracted from valid regions that

overlap with the variants of interest are used (bottom row, Fig. 4b). A uniform handling of

these two scenarios using a single command (Fig. 4c) greatly simplifies their application.

Altogether, the variant effect prediction plugin allows integrating a broad range of regulatory

genomics predictive models into personal genome annotation pipelines and is trivially

extended with newly added models.

To inspect genomic regions containing the variant in higher detail, variant effect predictions

for all possible single nucleotide variants in the sequence can be computed using a single

command (Fig. 4d) and visualized as a mutation map (Fig. 4e). This helps to assess the

predicted impact of the variant of interest in the context of other possible variants in the

genomic region and may help pinpoint the affected cis-regulatory elements. For example,

the mutation maps for transcription factor binding sites of GATA2 show that the first four

models from Fig. 2 agree on the effect of the variant rs35703285. Interestingly, the three

most complex models (lsgkmSVM, DeepBind, and DeepSEA) predict effects of similar

strength further away from the core motifs. This reflects that they can model more complex

regulatory structure than the sole core motif captured by the position weight matrix

approach. Variant rs35703285 has been classified as pathogenic in the ClinVar dataset and

is linked to beta Thalassemia (MedGen:C0005283), a disease that reduces synthesis of the

hemoglobin subunit beta (hemoglobin beta chain) that results in microcytic hypochromic

anemia34. The mutation map illustrates that similar loss of GATA2 binding can be expected

from other variants in the region.

In addition to in-silico mutagenesis, which only applies to sequences, Kipoi provides a plugin

that can evaluate the influence for any type of input on model prediction by implementing

various feature importance algorithms, including saliency maps35 and DeepLift36. These

feature importance algorithms offer an additional perspective and are often much faster to

compute than in-silico mutagenesis.

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

Predicting pathogenic splice variants by combining models

Figure 5: Composite models using Kipoi for improved pathogenic splice variant scoring. (a)
Illustration of composite modelling for mRNA splicing. A model trained to distinguish pathogenic from
benign splicing region variants is easily constructed by combining Kipoi models for complementary
aspects of splicing regulation (MaxEntScan 3’ models acceptor site, MaxEntScan 5’ and HAL model
donor sites, labranchor models the branchpoint) and phylogenetic conservation. These variant scores
are combined by logistic regression to predict the variant pathogenicity (orange box). (b) Different
versions of the ensemble model were trained and evaluated in 10-fold cross-validation for the
dbscSNV and ClinVar datasets (Methods). The four leftmost models are incrementally added to the
composite model in chronological order of their publication: the leftmost point only uses information
from the MaxEntScan/3prime model, while `+conservation (KipoiSplice4)` uses all four models and
phylogenetic conservation. These performances were compared to a logistic regression model using
state-of-the-art splicing variant effect predictors (SPIDEX, SPIDEX+conservation, dbscSNV).
KipoiSplice4 achieves state-of-the-art performance on the dbscSNV dataset and outperforms
alternative models on ClinVar which contains a broader range of variants (c) Fraction of unscored
variants for different models in the dbscSNV and ClinVar datasets.

State of the art models performing variant effect prediction frequently combine scores from

multiple models. The advantage is two-fold. First, combined scores can cover multiple

biological processes. Second, combined scores are more robust, because they average out

conflicting predictions of individual models. Combining models or scores can be easily done

in Kipoi by leveraging the standardization and modularity of models in combination with the

variant effect prediction plugin introduced above. As a proof-of-concept, we used Kipoi to

define a pathogenicity score of variants located near splice sites by integrating four

11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

predictive models covering complementary aspects of splicing (Fig 5a) into a single

composite model.

Defect in splicing is one of the most frequent cause of genetic disease (López-Bigas et al.,

2005). In the first step of splicing, the donor site is attacked by an intronic adenosine to form

a branchpoint. In the second step, the acceptor site is cleaved and spliced (i.e. joined) to the

3’ end of the donor site. To cover variants possibly affecting splicing through different

mechanisms, we considered four complementary models trained on different types of data.

These models were i,ii) 5’ and 3’ MaxEntScan8, a probabilistic model scoring donor and

acceptor site regions that was trained on splice sites with cDNA support, iii) HAL9, a k-mer

based linear regression model scoring donor sites that was trained on a massively parallel

reporter assay in which hundreds of thousands of random sequences probed the donor site

sequence space9, and iv) Labranchor, a deep-learning model scoring the region upstream of

the acceptor site for possible branchpoint locations that was trained from experimentally

mapped branchpoints37.

While MaxEntScan can be easily applied to score genetic variants provided in VCF files

through ENSEMBL’s variant effect predictor plugin38, HAL and Labranchor do not offer this

functionality out-of-the-box. Using Kipoi’s API, the variant effect prediction is standardized for

all these models (Fig. 5a). We built a new Kipoi model, KipoiSplice4, which is a logistic

regression model based on variant effect predictions of these four Kipoi models and

phylogenetic conservation scores (Methods, Fig 5a). This combined model was trained on

two different datasets of splice variants classified either as pathogenic or benign (dbscSNV

and ClinVar, Methods).

To illustrate the benefit of integrating multiple models, we incrementally added the four

splicing models in the chronological order of model publication. With an increasing number

of models, the performance increased in both, dbscSNV and ClinVar datasets (Fig. 5b, four

left-most methods). Next, we evaluated the model performance against two state-of-the-art

splicing scores: another integrative approach that predicts pathogenic splicing-affecting

variants dbscSNV39 and SPIDEX40. For a fair comparison, we furthermore trained a score

combining SPIDEX and phylogenetic conservation on each dataset, which reached the

same performance as the dbscSNV model on ClinVar. While the performance of

KipoiSplice4 is similar to dbscSNV for the dbscSNV dataset, KipoiSplice4 outperforms all

other methods on the ClinVar dataset. One reason for the better performance of

12

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

KipoiSplice4 is that it scores more variants (Fig. 5c). Neither SPIDEX nor dbscSNV explicitly

model the splicing branchpoint, while KipoiSplice4 does so using labranchor.

By wrapping the individual models into a data-loader, we made the ensemble model

KipoiSplice4 available in Kipoi. KipoiSplice4 can hence be executed on demand to de novo

predict effects of variants in splice sites. This is not possible with other state-of-the-art

splicing models which are published as pre-computed databases, such as dbscSNV. While

SPIDEX offers a web interface to generate variant scores, it can currently only do so for 40

variants at a time. Altogether, by wrapping existing splice-models into Kipoi, and thereby

leveraging the out-of-the-box variant effect prediction, we developed a state-of-the-art model

for scoring the pathogenicity of splicing variants. Additionally, with new splicing models and

more extensive training datasets of better quality being published, the ensemble model can

be easily and transparently improved.

Discussion

We have developed a repository and programmatic standard for sharing and re-use of

trained models in genomics, thereby addressing an unmet need. By providing a unified

interface to models, automated installation, and nightly tests, Kipoi streamlines the

application of trained models, overcomes the technical hurdles of their deployment, improves

their dissemination, and ultimately facilitates reproducible research. The use cases

presented demonstrate that Kipoi greatly facilitates the execution and comparison of

alternative models for the same task, standardizes their use to functionally interpret genetic

variants, and facilitates the development of new models based on existing ones, either by

means of transfer learning or by model combination.

The dissemination and sharing of trained models has major advantages compared to

sharing pre-computed predictions or to sharing code for users to train models from scratch.

In particular, pre-computed predictions cannot be extended to new or different input data.

Moreover, the generation of extensive sets of pre-computing results for a wide range of

potentially relevant input values can be prohibitive in terms of compute time and storage.

For example, storing variant effect predictions is technically impossible even for relatively

short (<10bp) indels for combinatorial reasons. On the other hand, re-training models from

scratch is frequently non-trivial, requires access to potentially very large training dataset, and

can require large computational resources. Trained machine learning models can be

regarded as functions encoding data distributions41. Hence, it is maybe not surprising that a

13

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

demand for repositories dedicated to trained models arises in the era of big data, where they

fill a gap between code repositories and data repositories.

At the core of our contribution is an application programmatic interface (API), a unified way

for software components to interact with any of these models. APIs provide modularity to

software design, help to reduce code redundancy and allow developers to focus only on the

most relevant tasks. We demonstrated the utility of the API, which provides a generic

approach to carry out variant effect predictions, and to derivefeature importance scores for a

wide range of models. These examples are important downstream functionalities which are

not typically provided by software implementations of models as provided by authors, or they

may be implemented using diverse and inconsistent paradigms and interfaces. We foresee a

range of future plugins that are of general use for different models. While most of the models

in Kipoi currently predict molecular phenotypes from DNA sequence, the design of Kipoi is

agnostic to input or output data types. Additionally, the API can be used with multiple model

repositories, both public and private, simultaneously. Hence, the genericity of Kipoi makes it

attractive for applications beyond the domain of genomics.

While complying to a programmatic standard can constrain contributors and provide some

initial overhead to adapt legacy software, the long-term community benefits from the

standardization will outweigh short-term investments. The open software project

Bioconductor and the data repository GEO are canonical examples of the expected gains.

These frameworks achieve a suitable compromise between rigidly enforced structure and no

structure. With this in mind, we have designed Kipoi’s API to rigorously specify specific

aspects such as providing example files to test model executability, while leaving other

choices, such as the machine learning modelling framework, opento developers. We

anticipate that community usage will help to develop good practices and find a reasonable

balance between standardization and flexibility.

An exciting next step would be to set up open challenges for key predictive tasks in

genomics with open challenge platforms like DREAM42 or CAGI43, and make the best models

available in Kipoi. This would simplify and modularize the development of predictive models

into three steps: (1) designing training and evaluation datasets (challenge organizers), (2)

training the best model (challenge competitors) and (3) making the model easily available for

others to use (repository of trained models). Such modularization would lower the entry

barrier for newcomers as well as machine learning practitioners lacking domain expertise.

14

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

Moreover, as models and training datasets continue to evolve, such best-in-class models

could be continuously updated and made immediately available to all. Kipoi provides

important elements to this end: a standardization for data loading and model execution,

nightly tests, and a central repository.

A repository of interoperable models opens the possibility of building composite models that

capture how genetic variation propagates through successive biological processes. Such a

sequential, modular modeling offers multiple advantages. First, end-to-end fitting of a

complex trait such as a cellular behavior or the expression level of a gene can be too difficult

because the amount of data is too scarce compared to the complexity of the phenomena. In

contrast, today’s high-throughput technologies focusing on a specific sub-process offer more

data at higher accuracy. For example, massively parallel reporter assays allow performing

saturated screens in which nearly the complete combinatorial sequence space can be

probed for the selected molecular processes. Hence accurate models may be obtained for

these elementary tasks and serve as building blocks for modeling more complex tasks.

Second, modularity is a hallmark of biological processes as the same proteins are often

involved in multiple processes. We therefore anticipate fruitful cross-talks between modelers

sharing individual components useful for different modeling tasks. Third, such approach

would lead to models that are interpretable in terms of simpler biological processes as

opposed to black box predictors. Whether and how predictive models of elementary steps

can be sequentially combined and fitted together to model multiple higher order biological

processes of increasing complexity is an exciting research direction. Altogether, we foresee

Kipoi as a catalyst in the endeavour to model complex phenotypes from genotype.

Methods

Kipoi infrastructure

Model source

Kipoi’s main model repository (“model source”) is hosted as a git repository at

https://github.com/kipoi/models. Each folder containing the following files is considered to be

a single model:

- model.yaml - model description in the YAML format

- model_files/ - directory with files required by the model (like model weights)

- model.py - (optional) model implementation as a python class

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

- example_files/ - directory with small files used to test the model

- dataloader.py - data-loader implementation (could be implemented by other

models)

- dataloader.yaml - data-loader description (could be implemented by other models)

- dataloader_files/ - (optional) directory with files required by the data-loader

The `model.yaml` and `dataloader.yaml` each specify (i) general information like author

name, publication link or description, (ii) required software dependencies, (iii) input-output

data types, and (iv) additional information required by plugins like variant effect prediction.

`model_files`, `dataloader_files`, `model.py` and `dataloader.py` contain the code and

parameters necessary to execute the model. `example_files` contains small input files to test

the execution of model prediction.

Folders whose name ends with `_files` are tracked by Git Large File Storage (LFS,

https://git-lfs.github.com/). In addition to Kipoi’s default model source, the user can host and

seamlessly use their own, private or public, model source. Model sources are specified in

Kipoi’s config file and are treated completely equivalently to the default model source.

Depositing and testing models

New models or updates to existing models are submitted as pull requests to the Kipoi model

repository https://github.com/kipoi/models. For each pull request, the added or updated

models are automatically tested using the CircleCI continuous integration service.

Additionally, all models from the master branch of the repository are automatically tested

every day. For each tested model, a new Conda environment with all the required

dependencies will get installed, and model prediction will get executed for the example files.

In order to pass the tests no errors or warnings can be raised, and the arrays returned by

both, the data-loader and the model, have to be consistent with the description in their yaml

files.

The API

Kipoi’s API is implemented as a python package supporting python 2.7 and python>=3.5 .

The package is directly installable from PyPI and Bioconda22. It provides a command line

interface exposed through the `kipoi` command. Using Kipoi from the R programing

language is enabled by using the `reticulate` R package. The API provides functionality

necessary to manage model and data-loader dependencies, it provides generic methods for

16

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

executing model predictions and gradient calculations (where available). To enable generic

definition of interfaces Kipoi defines two main classes: `Model` and `Dataloader`.

Model

Model is a class implementing the method `predict_on_batch(x)`. Argument x can be

a single numpy array, a list of numpy arrays or a dictionary of numpy arrays. In its current

version, Kipoi wraps models implemented in Keras, Tensorflow, PyTorch and Scikit-learn.

For models developed in one of these frameworks, the contributor can directly provide the

serialized model. A user can also deposit a custom model by implementing the Model class

and hence make use of arbitrary python code or even command-line calls. For models

implemented in deep learning frameworks (Keras, Tensorflow, PyTorch), the model class

additionally provides two methods: `predict_activation_on_batch(x, layer,
pre_nonlinearity=False)`, which returns the feature activation map of an intermediary

layer (useful for transfer learning) and `input_grad(x, filter_idx=None,
avg_func=None, wrt_layer=None, ...)`, which returns the gradient of the input

with respect to model’s predictions (useful for feature importance scores). Support for

additional machine learning frameworks can be easily added.

Data-loader

The aim of the data-loader is to generate batches of data consumable by the model. It

encapsulates the loading of data from input files and its pre-processing. The data-loader has

to return a dictionary with three keys: inputs, targets (optional), metadata (optional). Value of

the ‘inputs’ key is directly passed on to the model input. ‘targets’ provide labels useful for

training or benchmarking. ‘metadata’ optionally provide additional information about the data

samples (like sample identifier or genomic ranges of the extracted genome sequence).

To implement a data-loader, the contributor can either write a python function, generator,

iterator or a Dataset class (http://kipoi.org/docs/contributing/04_Writing_dataloader.py/).

Regardless of how the data-loader is implemented, the user will have direct access to the

following methods: `batch_iter` returning batches of data stored as a dictionary with

inputs, targets and metadata keys, `batch_train_iter` returning batches of data

indefinitely as a tuple of inputs and targets (directly useful with the Keras’ fit_generator),

`batch_predict_iter` returning batches of inputs and `load_all` returning the whole

dataset. Parallel data-loading is by default enabled for data-loaders written as a `Dataset` by

using the DataLoader class originally implemented in PyTorch.

17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

Variant effect prediction and model interpretation plugins

Additional domain-specific functionality of models can be implemented in the form of

additional python packages - Kipoi plugins. We implemented two plugins: variant effect

prediction (https://github.com/kipoi/kipoi-veff) based on in-silico mutagenesis and model

interpretation using feature importance scores (https://github.com/kipoi/kipoi-interpret).

Dependency installation

Model and the data-loader can specify dependencies installable either by the Conda

package manager (https://conda.io) or the `pip` (https://pypi.org/project/pip/) package

manager. Thanks to the open source efforts like conda-forge (https://conda-forge.org/) or

Bioconda (https://bioconda.github.io/), the Conda package manager covers a large set of

dependencies including all major bioinformatics packages. Since Conda is a package

manager for any programming language, not just python, it is easy to integrate models that

are implemented in another language and only expose a command-line interface. One such

example is lsgkm-SVM which is precompiled and distributed through the bioconda channel.

One example Kipoi model built on top of lsgkm-SVM is lsgkm-SVM/Tfbs/Ctcf/K562/Uw_Std.

The main strength of Conda is that it can create virtual environments. This allows the user to

create multiple environments for different models. For the definition of computation pipelines

we recommend using Kipoi’s command line interface and virtual environment creation with

Snakemake44. This allows to calculate model predictions for different models using a single

generic snakemake rule while the model predictions get executed in isolated environments.

Models

pwm_HOCOMOCO

Position weight matrices (PWM) for all 600 human transcription factors in HOCOMOCO v10

were downloaded from

http://hocomoco10.autosome.ru/final_bundle/HUMAN/mono/HOCOMOCOv10_pcms_HUMA

N_mono.txt and transformed to position specific scoring matrices (PSSM) using the

pseudocount probability of 0.001. Scanning the DNA sequences using the PSSM matrix is

implemented as a Keras model consisting of a single convolutional layer with one filter

whose weights are set to the PSSM, followed by global max pooling. The model operates on

one-hot-encoded DNA sequence.

18

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

DeepBind

Original weights and architecture were obtained from supplementary material of the original

publication5 and were converted to Keras 2.0 models (code:

https://github.com/kundajelab/DeepBindToKeras).

DeepSEA

The DeepSEA model was converted from the original Torch7 model6 to a PyTorch model

using a modified version of the script https://github.com/clcarwin/convert_torch_to_pytorch.

Since prediction of model tasks and variant effect prediction use different handling of

reverse-complement sequences there are two models in the Kipoi model zoo dedicated to

the two different used cases in order to replicate results from the original model exactly.

Implementations of reverse-complement handling were taken from .lua files provided in the

software package in the publication6. Predictions of the models and variant effects produced

by the models in the Kipoi repository match the predictions produced by the website

http://deepsea.princeton.edu/job/analysis/create/.

FactorNet

FactorNet models were obtained from https://github.com/uci-cbcl/FactorNet. In addition to

the models available in the github repository, Daniel Quang kindly provided the trained

models for CEBPB and MAFK, which were part of the internal evaluation round in the

ENCODE-DREAM in vivo transcription factor binding prediction challenge

(http://synapse.org/encode). The models were converted to Keras 2.0 supporting the

tensorflow backend.

MaxEntScan

We used MaxEntScan implemented in the maxentpy package

(https://github.com/kepbod/maxentpy) provided through the Bioconda channel. We

implemented a data-loader that takes the reference genome FASTA file and the genome

annotation GTF file as input and returns sequences of all regions [-3nt,5nt] w.r.t. the

annotated 5’ splice sites for the 5’ model and sequences of all regions [-3nt,20nt] w.r.t. the

annotated 3’ splice sites for the 3’ model.

19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

HAL

The HAL model was adapted from https://github.com/Alex-Rosenberg/cell-2015 by

implementing the identical 5’ splice-site scoring function into a Kipoi’s model class with the

`predict_on_batch` function. Model weights were obtained from the same repository and

directly applied. We implemented a data-loader that takes the reference genome FASTA file

and the genome annotation GTF file as inputs and returns k-mer counts of sequences from

all regions [-80nt, 80nt] w.r.t. the annotated 5’ splice sites.

Labranchor

The Labranchor model was obtained from https://github.com/jpaggi/labranchor. The Keras

model implementation provided by the authors could directly be used for the Kipoi model.

We implemented a data-loader that takes the reference genome FASTA file and the genome

annotation GTF file as inputs and returns one-hot-encoded sequences of all regions [-70, 0]

nt relative to the annotated 3’ splice sites.

Benchmarking transcription factor binding prediction models

The complete Snakefile for the analysis described in this section is available at

https://github.com/kipoi/manuscript/blob/master/src/tf-binding/Snakefile.

Data and prediction command

The test set for transcription factor binding models was generated using 101bp contiguous

intervals throughout chromosome 8 in the human genome assembly hg19. Each interval was

labeled based on majority overlap with transcription factor ChIP-seq high-confidence peaks

(IDR<0.05) from the ENCODE-DREAM in-vivo transcription factor binding site prediction

challenge (http://synapse.org/encode). Intervals in the hg19 blacklist regions

(https://www.encodeproject.org/annotations/ENCSR636HFF/) were removed. CEBPB was

evaluated in the HeLa-S3 (ENCFF002CSA), JUND in HepG2 (ENCSR000EEI), MAFK in

K562 (ENCFF812QPN) and NANOG in H1-hESC (ENCFF379EPK) cell type. The additional

files required by FactorNet (like the DNase accessibility track) were obtained from the URLs

listed in https://github.com/uci-cbcl/FactorNet/tree/master/data#bigwig-files. For models that

require sequence lengths of more than 101 bp, we increased the size of labeled intervals.

For example, to provide 1002 bp intervals for FactorNet, we subtracted 450 bp from start

coordinates and added 451 bp to end coordinates. All model predictions were obtained by

running the `kipoi predict` command in the individual conda environment for each model.

20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

Accessible-only regions (Supp. Figure 1)
In addition to chromosome-wide evaluation, the auPRC was computed only for regions

overlapping DNase-seq signal peak regions in the corresponding cell-type by more than

50%. DNase-seq peaks were obtained from the relaxed peaks provided by the

ENCODE-DREAM in-vivo transcription factor binding challenge (http://synapse.org/encode).

lsgkm-SVM training

lsgkm-SVM from Bioconda (bioconda::ls-gkm=0.0.1) was used for model training and

prediction. The model was retrained on ENCODE datasets using files downloaded from the

same source as mentioned in the publication45. Preprocessing of training was performed

using the gkmSVM R-package using default parameters `genNullSeqs(..., nMaxTrials=20,

xfold=1, genomeVersion='hg19',..)`. For training the 322 datasets with the most peaks were

chosen, similar to the lsgkm-SVM publication. Training was performed with the parameters

`gkmtrain -l 11 -d 3 -c 1 -T 16 -m 5120 -v 3`. For the final model chromosome 8 and 9 were

held out from training to enable model benchmarking comparable with the DeepSEA models.

Trained models reached area under the receiver operating curve (auROC) similar to the

original publication45:

 auc_roc # peaks # peaks no ‘N’ # seqs test set

count 322 322 322 322

mean 0.953404 22698.54037 22698.13044 1854.341615

std 0.037503 13498.66481 13498.63832 1210.277168

min 0.802789 6067 6067 391

25% 0.931123 11210.5 11210.5 861

50% 0.970242 19397.5 19396 1424

75% 0.981651 34510 34510 2877.75

max 0.996428 71537 71535 6342

Transfer learning

Peak File Acquisition

We downloaded DNase files for 431 biosamples (cell lines or tissues) from Roadmap

(http://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/) and ENCODE

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

(https://www.encodeproject.org/), and processed them separately to obtain a final dataset of

binary labels (0/1) indicating chromatin accessibility in each interval of the combined

accessibility region for each biosample. We processed the raw data as follows: The fastq

files were aligned with BWA aln (v0.7.10), where all datasets were treated as single-end.

Dynamic read trimming was set to 5, the seed length was 32, and 2 mismatches maximum

were allowed in mapping. After mapping, reads were filtered to remove unmapped reads and

mates, non-primary alignments, reads failing platform/vendor quality checks, and

PCR/optical duplicates (-F 1804). Low quality reads (MAPQ < 30) were also removed.

Duplicates were marked with Picard MarkDuplicates and removed. The final filtered file was

converted to tagAlign format (BED 3+3) using bedtools’ `bamtobed`. Cross-correlation

scores were obtained for each file using phantompeakqualtools (v1.1).

All files with a cross-correlation quality tag below 0 were discarded. For the ENCODE data

generated from the Stam Lab protocol, the datasets were trimmed to 36 bp and technical

replicates were combined. After removing mitochondrial and ambiguously mapped reads,

the reads were randomly subsampled to a total of 50 million reads per sample. For the

ENCODE data generated from the Crawford Lab protocol, the same procedure as above

was performed, except reads were trimmed to 20 bp due to the different library generation

protocol. For the Roadmap data, which was all generated by the Stam Lab protocol, the

same procedure as above was performed with trimming to 36 bp. Reads from multiple files

were combined and subsampled to 50 million reads in case the total number of reads was

more than 50 million.

These trimmed, filtered, subsampled tagAlign files were then used to generate signal tracks

and call peaks. Signal tracks and peaks were called with a loose threshold (p < 0.01) with

MACS2 to generate bigwig files (fold enrichment and p-value) and Narrow Peak files,

respectively. To obtain final peak sets, we performed pseudoreplicate subsampling on the

pooled reads across all replicates (taking all reads from the final tagAligns and splitting in

half by random assignment to two replicates) and running IDR (v2.0.3) with a p-value

threshold of <0.1 to get a consensus region set for each DNase experiment.

Data Preprocessing

We divided the genome into intervals of width 1000 bp using a stride of 200 bp. For each

interval, we use the hg19 reference genome to extract the DNA sequence and assign a

binary label of 0 (negative) or 1 (positive) for each of the 431 biosamples if the central 200

22

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

bp of the interval overlapped at least 50% of the accessibility IDR peak or if the accessibility

IDR peak overlapped at least 50% of the the central 200 bp of the interval. This resulted in

the 16,551,625 intervals and 431 binary labels per interval for each of the biosamples. We

use data from chromosomes 1, 8, and 21 for testing, data from chromosome 9 for validation,

and the remaining data for training the models.

We selected 10 biosamples to benchmark our transfer learning procedure by performing

hierarchical clustering and randomly selecting one biosample from each of the 10 clusters.

Selected biosamples were: common myeloid progenitor, GM12878, Jurkat clone E61, K562,

mesendoderm, mesenchymal stem cell, cardiac mesoderm, thymus, lung, and brain.

Model Architecture

We trained 3 types of models predicting chromatin accessibility given DNA sequence: one

multi-task model with randomly initialized weights predicting accessibility for 421 cell-types,

and two types of single-task models trained on the remaining 10 cell-types: a model with

randomly initialized weights and a model with weights transferred from the multi-task model.

All models were convolutional neural networks (CNN) with the BASSET32 architecture and

were implemented in Keras version 1.2 using tensorflow-gpu version 1.0.0 backend.

Transfer Learning

We used the trained multi-task model and transferred the weights from all but the final

classification layer to the transferred single-task architecture. We froze the weights of all

layers but the final two, and replaced the final classification layer with a layer outputting a

single prediction, instead of 421.

Model Training and Evaluation

Randomly initialized models were trained using a categorical or binary cross-entropy loss,

batch size of 256, epoch size of 2,500,000 and the ADAM optimizer46 with a learning rate of

0.0003. Pre-trained models were fine-tuned using a batch size of 128, no restrictions on the

epoch size and the default learning rate (0.001) using the ADAM optimizer. Early stopping

monitoring auPRC on the validation set was used with patience of 4 epochs for models with

randomly initialized weights and monitoring the validation cross-entropy loss with patience of

1 epoch for models with transferred weights. Single-cell model and transferred single-cell

model were evaluated on the same test set for a given biosample (chromosomes 1, 8 and

21). For example in the GM12878 biosample, the test set contains 135,630 positives and

23

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

2,330,052 negatives, and the validation set contains 35,526 positives and 647,116

negatives.

Predicting the molecular effects of genetic variants using interpretation

plugins

The presented variants were selected from the ClinVar release from April 2018. The

selection involved performing variant effect prediction for all variants in the DeepSEA model

and selecting the variant with the strongest negative predicted effect in GATA2 model

outputs respectively. Mutation maps centered on those two variants were generated using

the mutation map commands displayed in Fig. 4d and implemented in the kipoi-veff plugin.

Predicting pathogenic splice variants by combining models

Data: ClinVar

The ClinVar release from April 2018 based on the reference genome GRCh37 was used

(ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar_20180429.vcf.gz). Only variants in

the range [-40nt, 10nt] around the splicing acceptor or variants in the range [-10, 10] nt

around the splice donor of a protein coding gene (ENSEMBL GRCh37 v75 annotation) were

used. The positive set comprises of variants classified as “Pathogenic” (6,310 variants) and

the negative set comprises of variants classified as “Benign” (4,405 variants). Variants

causing a premature stop codon were discarded. Per-variant pathogenicity/conservation

scores (‘CADD_raw', 'CADD_phred', 'phyloP46way_placental', 'phyloP46way_primate’) and

the dbscSNV score were obtained by VEP38. Spidex scores were obtained from ANNOVAR

(http://www.openbioinformatics.org/annovar/spidex_download_form.php).

Features

Kipoi features: For specific Kipoi models the following features were produced:

- MaxEntScan/3prime, MaxEntScan/5prime, HAL

- <model>_ref: Model prediction for the reference allele

- <model>_alt: Model prediction for the alternative allele

- Labranchor

- labranchor_logit_ref: (optional) Model prediction on the for the reference allele

on the logit scale

24

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

- labranchor_logit_alt: (optional) Model prediction on the for the alternative

allele on the logit scale

- All models

- <model>_is_na: 1 if model prediction is unavailable for the variant and 0

otherwise

These features were obtained by running the `kipoi veff score_variants`

command on the variants table with `-s logit_ref logit_alt ref alt logit
diff` formatted as a vcf file and then parsing the returned vcf files using

`kipoi_veff.parsers.KipoiVCFParser`.

dbscSNV features:
- dbscSNV_rf_score' - dbscSNV random forest score obtained with VEP

- 'dbscSNV_rf_score_isna - 1 if dbscSNV_rf_score' is unavailable for the variant and 0

otherwise

SPIDEX features:
- dpsi_max_tissue', the maximum mutation-induced change in percentage-spliced in

(PSI) across 16 tissue
- 'dpsi_max_tissue_isna', 1 if dpsi_max_tissue' is unavailable for the variant and 0

otherwise

- 'dpsi_zscore', z-score transformed dpsi_max_tissue

- 'dpsi_zscore_isna, 1 if 'dpsi_zscore' is unavailable for the variant and 0 otherwise

Conservation features: All obtained using VEP

- CADD_raw, Combined Annotation–Dependent Depletion score as described in 47
- CADD_phred, CADD phred-like rank score based on whole genome CADD raw

scores

- phyloP46way_placental, phyloP (phylogenetic p-values) conservation score based

on the multiple alignments of 33 placental mammal genomes including human as

described in 48.

- phyloP46way_primate, phyloP (phylogenetic p-values) conservation score based on

the multiple alignments of 10 primate genomes including human.

NA values were zero-imputed and each feature was standardized to have mean of zero and

variance of one.

25

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

Response variable: “ClinicalSignificance” was transformed into a binary classification

variable with ‘Pathogenic’ corresponding to class 1 and ‘Benign’ corresponding to class 0.

Data: dbscSNV

Table S2 from the supplementary material of 49 was used to train and evaluate models in a

10-fold cross validation (2959 variants, 1164 from the positive class).

dbscSNV features (without conservation, described in 49)

- 'PWM_ref', 'PWM_alt',

- 'MES_ref', 'MES_alt',

- 'NNSplice_ref', 'NNSplice_alt',

- 'HSF_ref', 'HSF_alt',

- 'GeneSplicer_ref', 'GeneSplicer_alt',

- 'GENSCAN_ref', 'GENSCAN_alt',

- 'NetGene2_ref', 'NetGene2_alt',

- 'SplicePredictor_ref', 'SplicePredictor_alt

Kipoi model, conservation and SPIDEX features were the same as for the ClinVar dataset.

Response variable: “Group” variable in the original table - ‘Positive’==1 and ‘Negative’==0.

Meta-model and evaluation

Logistic regression implemented in scikit-learn with default parameters was used to build the

meta model using different feature subsets. 10-fold cross-validation was used (implemented

in `sklearn.model_selection.cross_validate`) to evaluate models using the auROC metric.

Code availability

Kipoi, kipoi_veff, and kipoi_interpret are available as python packages on PyPI and their
source code is available at https://github.com/kipoi/kipoi, https://github.com/kipoi/kipoi-veff
and https://github.com/kipoi/kipoi-interpret correspondingly. Models are hosted at
https://github.com/kipoi/models. Code to reproduce the results is available at
https://github.com/kipoi/manuscript.

Author contributions

ZA, RK, JI, AS, AK, OS, JG conceived the Kipoi API. ZA, RK implemented the Kipoi API. ZA,
RK conceived and implemented kipoi-veff. ZA, RK and AS conceived and implemented
kipoi-interpret. ZA, RK, JI, NX, AB performed the analysis. DK compiled the DNA
accessibility dataset. ZA, RK, JI, NX, AS, LU contributed models to the repository. AK, OS,
and JG designed and supervised research. ZA, RK, AK, OS, JG wrote the manuscript.

26

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

Acknowledgement

We thank Chuan–Sheng Foo for early discussion on the manuscript and Nejc Zupan for
implementing the website. We thank Daniel Quang for providing help with FactorNet and
trained models for CEBPB and MAFK. We thank Wolfgang Huber for feedback on the
manuscript. Z.A. and J.C were supported by a Deutsche Forschungsgemeinschaft fellowship
through the Graduate School of Quantitative Biosciences Munich. J.C. was supported by the
Competence Network for Technical, Scientific High Performance Computing in Bavaria
KONWIHR. L.U. received support from core funding of the European Molecular Biology
Laboratory and the European Union’s Horizon 2020 research and innovation programme
(grant agreement number N635290). J.I. is supported by a Stanford BioX Fellowship. A.S. is
supported by an HHMI International Student Research Fellowship and a Stanford BioX
Fellowship. D.S.K. is supported by a Stanford BioX Fellowship. A.B. is supported by NIH
grant 1DP2OD022870. A.K. is supported by NIH grants 1DP2OD022870 and
1U01HG009431. This work was supported by NVIDIA hardware grant providing a Titan X
GPU card.

References

1. Luo, R., Sedlazeck, F. J., Lam, T.-W. & Schatz, M. Clairvoyante: a multi-task

convolutional deep neural network for variant calling in Single Molecule Sequencing.

bioRxiv 310458 (2018). doi:10.1101/310458

2. Poplin, R. et al. Creating a universal SNP and small indel variant caller with deep neural

networks. bioRxiv 092890 (2018). doi:10.1101/092890

3. Kim, H. K. et al. Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity.

Nat. Biotechnol. 36, 239 (2018).

4. Chuai, G. et al. DeepCRISPR: optimized CRISPR guide RNA design by deep learning.

Genome Biol. 19, 80 (2018).

5. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence

specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33,

831–838 (2015).

6. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep

learning-based sequence model. Nat. Methods 12, 931–934 (2015).

27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

7. Quang, D. & Xie, X. FactorNet: a deep learning framework for predicting cell type

specific transcription factor binding from nucleotide-resolution sequential data. (2017).

doi:10.1101/151274

8. Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with

applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004).

9. Rosenberg, A. B., Patwardhan, R. P., Shendure, J. & Seelig, G. Learning the sequence

determinants of alternative splicing from millions of random sequences. Cell 163,

698–711 (2015).

10. Paggi, J. M. & Bejerano, G. A sequence-based, deep learning model accurately predicts

RNA splicing branchpoints. bioRxiv (2017).

11. Gentleman, R. C. et al. Bioconductor: open software development for computational

biology and bioinformatics. Genome Biol. 5, R80 (2004).

12. Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array

data repository. Nucleic Acids Res. 30, 207–210 (2002).

13. Kolesnikov, N. et al. ArrayExpress update--simplifying data submissions. Nucleic Acids

Res. 43, D1113–6 (2015).

14. EMBL-EBI. European Nucleotide Archive. Available at: https://www.ebi.ac.uk/ena.

(Accessed: 23rd May 2018)

15. TensorFlow Hub | TensorFlow. TensorFlow Available at:

https://www.tensorflow.org/hub/. (Accessed: 2nd July 2018)

16. keras-applications. Available at: https://github.com/keras-team/keras-applications.

(Accessed: 23rd May 2018)

17. caffe. Available at: https://github.com/BVLC/caffe/wiki/Model-Zoo. (Accessed: 23rd May

2018)

18. Keras Documentation. Available at: https://keras.io/. (Accessed: 23rd May 2018)

19. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

28

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

Distributed Systems. (2016).

20. PyTorch. Available at: https://pytorch.org/. (Accessed: 23rd May 2018)

21. When it comes to reproducible science, Git is code for success. Available at:

https://www.natureindex.com/news-blog/when-it-comes-to-reproducible-science-git-is-co

de-for-success. (Accessed: 28th June 2018)

22. Grüning, B. et al. Bioconda: sustainable and comprehensive software distribution for the

life sciences. Nat. Methods 15, 475–476 (2018).

23. Kulakovskiy, I. V. et al. HOCOMOCO: expansion and enhancement of the collection of

transcription factor binding sites models. Nucleic Acids Res. 44, D116–25 (2016).

24. Ghandi, M., Lee, D., Mohammad-Noori, M. & Beer, M. A. Enhanced regulatory

sequence prediction using gapped k-mer features. PLoS Comput. Biol. 10, e1003711

(2014).

25. Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep

neural networks? in Advances in Neural Information Processing Systems 27 (eds.

Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q.)

3320–3328 (Curran Associates, Inc., 2014).

26. Kornblith, S., Shlens, J. & Le, Q. V. Do Better ImageNet Models Transfer Better? arXiv

[cs.CV] (2018).

27. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural

networks. Nature 542, 115–118 (2017).

28. Zeng, T., Li, R., Mukkamala, R., Ye, J. & Ji, S. Deep convolutional neural networks for

annotating gene expression patterns in the mouse brain. BMC Bioinformatics 16, 147

(2015).

29. Xu, Y. et al. Large scale tissue histopathology image classification, segmentation, and

visualization via deep convolutional activation features. BMC Bioinformatics 18, 281

(2017).

29

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

30. Pawlowski, N., Caicedo, J. C., Singh, S., Carpenter, A. E. & Storkey, A. Automating

Morphological Profiling with Generic Deep Convolutional Networks. bioRxiv 085118

(2016). doi:10.1101/085118

31. Howard, J. & Ruder, S. Universal Language Model Fine-tuning for Text Classification.

arXiv [cs.CL] (2018).

32. Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the

accessible genome with deep convolutional neural networks. Genome Res. 26,

990–999 (2016).

33. Zeng, H. & Gifford, D. K. Predicting the impact of non-coding variants on DNA

methylation. Nucleic Acids Res. 45, e99 (2017).

34. Origa, R. Beta-Thalassemia. in GeneReviews® (eds. Adam, M. P. et al.) (University of

Washington, Seattle, 2000).

35. Simonyan, K., Vedaldi, A. & Zisserman, A. Deep Inside Convolutional Networks:

Visualising Image Classification Models and Saliency Maps. (2013).

36. Shrikumar, A., Greenside, P. & Kundaje, A. Learning Important Features Through

Propagating Activation Differences. (2017).

37. Mercer, T. R. et al. Genome-wide discovery of human splicing branchpoints. Genome

Res. 25, 290–303 (2015).

38. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

39. Dong, C. et al. Comparison and integration of deleteriousness prediction methods for

nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24,

2125–2137 (2014).

40. Xiong, H. Y., Alipanahi, B. & Lee, L. J. The human splicing code reveals new insights

into the genetic determinants of disease. Science (2015).

41. Murphy, K. P. Machine Learning: A Probabilistic Perspective. (MIT Press, 2012).

42. homepage - Dream Challenges. Dream Challenges Available at:

30

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

http://dreamchallenges.org/. (Accessed: 2nd July 2018)

43. Critical Assessment of Genome Interpretation |. Available at:

https://genomeinterpretation.org/. (Accessed: 2nd July 2018)

44. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine.

Bioinformatics 28, 2520–2522 (2012).

45. Lee, D. LS-GKM: a new gkm-SVM for large-scale datasets. Bioinformatics 32,

2196–2198 (2016).

46. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG]

(2014).

47. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human

genetic variants. Nat. Genet. 46, 310–315 (2014).

48. Liu, X., Wu, C., Li, C. & Boerwinkle, E. dbNSFP v3.0: A One-Stop Database of

Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site

SNVs. Hum. Mutat. 37, 235–241 (2016).

49. Jian, X., Boerwinkle, E. & Liu, X. In silico prediction of splice-altering single nucleotide

variants in the human genome. Nucleic Acids Res. 42, 13534–13544 (2014).

31

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted July 24, 2018. .https://doi.org/10.1101/375345doi:bioRxiv preprint

